
Reaction Tester
Mission 10

Pre-Mission Preparation

In this mission you will use a computer clock to

measure time.

● What are some things you use a timer for?

Mission 10: Reaction Time

How fast is your reaction time?

In this project you will make a device to measure

your reaction time. This project will:
● Give a 3-2-1 countdown

● Wait a random delay

● Turn the pixels GREEN

● Measure the reaction time for the button press

● Loop and do the countdown again

Objective #1: Milliseconds

● This mission will require you to turn on all the pixels the

same color.

● The code so far turned on a single pixel at a time:
○ pixels.set(0, RED)

● Using a list, there is an easier way:
○ pixels.set([RED, RED, RED, RED])

○ Do you notice the list with four items?

○ The pixels.set() command needs parenthesis, and the list needs []

○ Make sure you use both, in the correct order

Objective #1: Milliseconds

CodeX’s powerful clock can work in

milliseconds -- that’s 1,000 times per

second!

The clock measures milliseconds, but

sleep() is in seconds, so you just have to

do a little math.

Objective #1: Milliseconds
random.randrange(1, 5) gives a random

number between 1 and 4

random.randrange(1000, 5000) gives a

random number between 1000 and 4999.

● This gives you a good range of

milliseconds, but sleep() uses seconds

● 1000 milliseconds = 1 second, so

● Divide the random number by 1000!

Mission Activity #1

DO THIS:

● Start a new file named

Reaction_Time
● Import the codex module

● Import the random module

● Import the time module

● Turn all pixels BLACK

<continued>

Mission Activity #1

DO THIS:

● Get a random number using
1000 and 5000 as the range

● Divide the random number by
1000

● Use the random number in
sleep()

● Turn all pixels GREEN

Objective #2: The Countdown

To make this into a game, you want to give a

countdown.

● This will let the player know the game is

starting.

● It also indicates when to start the timer.

Objective #2: The Countdown

● Use display.clear() to clear the display

● Use display.print() to countdown from

3 to 2 to 1 (with a sleep delay in between)

● You can scale the number bigger on the

display for easy viewing
○ display.print(“3”, scale=6)

○ sleep(1)

Mission Activity #2
DO THIS:

● Clear the display & the pixels
○ Set all pixels to BLACK

● Countdown from 3 to 2 to 1

● Clear the screen again

● Then continue the rest of your

code to get a random number and

light all pixels GREEN

Objective #3: The Fourth Dimension
Computers relay on electronic clock circuits
● Clock circuits are used to move through code
● They are used as time delays in the sleep()

command
● When you turn on CodeX, its clock is

continuously running.

So far you have used the time module for sleep()
● The time module also has a function that

returns the current time on the computer clock

Objective #3: The Fourth Dimension
If you want to use more than one function from a
module, you need to import the entire library, not
just one function
● from time import sleep
● This imports only one function
● import time
● This imports the entire library

Objective #3: The Fourth Dimension
When you import the entire library, you must
reference it when calling one of its functions.
● time.sleep(1)
● time.ticks_ms()
● This returns the current time
● It returns a value, so the value needs to be

assigned to a variable
● start_time = time.ticks_ms()

Mission Activity #3
DO THIS:

● Go to your Mission Log and answer the question about importing

a module

Mission Activity #3

DO THIS:

● Change from

time import sleep to

import time

● Change all the sleep(1)

commands to time.sleep(1)

commands
○ HINT: There are four sleep() commands

<continued>

Mission Activity #3
DO THIS:

After the pixels turn GREEN:

● Assign start_time the value

from time.ticks_ms()

● Wait until BTN-A was pressed

● Assign end_time the value

from time.ticks_ms()

● Print start_time and end_time

Objective #4: Time Differential
You have the start_time and end_time.

The reaction time is the difference of

the two variables.

● You can just subtract the two:
○ reaction_time = end_time - start_time

● OR use another time module function that finds the difference:
○ reaction_time = time.ticks_diff(end_time, start_time)

Mission Activity #4
DO THIS:

● Go to your Mission Log and answer the question about functions

in the time module

Mission Activity #4
DO THIS:

● Assign reaction_time the

difference between

end_time and start_time

● Change the display.print()

statements to print the

reaction_time instead of

start_time and end_time

Objective #5: Let’s Keep Playing

Great job so far! The reaction game is fun, but what if you want to
play more than once?

● Make the game wait for a button press, and then play again
● You will need an infinite loop with most of the code in it
● You will need to wait for a button press after displaying the

reaction time
● You already have code for waiting for a button press, so you can

copy and paste it

Mission Activity #5

DO THIS:

● Add an infinite loop after the

import statements

● Indent all the code inside the

loop

● Add another wait loop at the

beginning of the loop

Objective #6: Reduce Repetition
Take a look at your code. Do you notice a

block of code that is repeated?

● You learned in Mission 9 that you can

write a function instead of copy-paste or

repeating code, you can write a function

instead.

● There are two places in your code that

wait for BTN-A to be pressed

Mission Activity #6
DO THIS:

● Write a wait_button() function.
○ HINT: A function goes near the top of

your code

● Delete the code that waits

inside the while loop.

● Call the wait_button() function

two times in the while loop.

Quiz Timing

During this mission you have learned about

CodeX’s electronic clock.

● Answer 3 quiz questions about the

computer timing.
CODEX

QUIZ

Objective #7: No Cheating

Fix a bug. Oh no! Players are pressing the button during the delay

and getting ultra fast times.

● The buttons.was_pressed() is always listening

● Even during the random delay

● Solve this problem by resetting the buttons.was_pressed() just

before starting the timer

Mission Activity #7

DO THIS:

● Reset buttons.was_pressed(BTN_A)

just before the pixels turn GREEN

Post-Mission Reflection

● Read the “completed mission” message

and click to complete the mission

● Complete the Mission 10 Log

Clearing your CodeX

Go to FILE -- BROWSE FILES
Select the “Clear” file and open it
Run the program to clear the CodeX

